Rational Points and Coxeter Group Actions on the Cohomology of Toric Varieties

نویسنده

  • G. I. LEHRER
چکیده

We derive a simple formula for the action of a finite crystallographic Coxeter group on the cohomology of its associated complex toric variety, using the method of counting rational points over finite fields, and the Hodge structure of the cohomology. Various applications are given, including the determination of the graded multiplicity of the reflection representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Cohomology of the Real Coxeter Toric Variety of Type A

The toric variety corresponding to the Coxeter fan of type A can also be described as a De Concini–Procesi wonderful model. Using a general result of Rains which relates cohomology of real De Concini–Procesi models to poset homology, we give formulas for the Betti numbers of the real toric variety, and the symmetric group representations on the rational cohomologies. We also show that the ratio...

متن کامل

Rational versus Real Cohomology Algebras of Low-dimensional Toric Varieties

We show that the real cohomology algebra of a compact toric variety of complex dimension 2 is completely determined by the combinatorial data of its deening fan. Surprisingly enough, this is no longer the case when taking rational coeecients. Moreover, we show that neither the rational nor the real or complex cohomology algebras of compact quasi-smooth toric varieties are combinatorial invarian...

متن کامل

Toric Kempf–Ness sets

In the theory of algebraic group actions on affine varieties, the concept of a Kempf– Ness set is used to replace the categorical quotient by the quotient with respect to a maximal compact subgroup. Using recent achievements of “toric topology,” we show that an appropriate notion of a Kempf–Ness set exists for a class of algebraic torus actions on quasiaffine varieties (coordinate subspace arra...

متن کامل

Chow Groups, Chow Cohomology, and Linear Varieties

We compute the Chow groups and Fulton–MacPherson’s operational Chow cohomology ring for a class of singular rational varieties including toric varieties. The computation is closely related to the weight filtration on the ordinary cohomology of these varieties. We use the computation to answer one of the open problems about operational Chow cohomology: it does not have a natural map to ordinary ...

متن کامل

The Cohomology of Real De Concini–procesi Models of Coxeter Type

We study the rational cohomology groups of the real De Concini–Procesi model corresponding to a finite Coxeter group, generalizing the type-A case of the moduli space of stable genus 0 curves with marked points. We compute the Betti numbers in the exceptional types, and give formulae for them in types B and D. We give a generating-function formula for the characters of the representations of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007